

# Линейная алгебра и аналитическая геометрия Лекция 2 Тема:Линейные пространства



образование в стиле hi tech

#### Системы линейных уравнений

Займёмся общими системами т линейных уравнений

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1, \\
 \dots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m,
\end{cases}$$

с n неизвестными для произвольных m,  $n \in \mathbb{Z}_{\geqslant 1}$ . Коэффициенты  $a_{ij}$  и свободные члены  $b_j$  чаще всего являются вещественными числами. Встречаются задачи, где они комплексные, рациональные, либо ещё более хитрые, но поначалу это не существенно для нашей будущей теории. Поэтому будем обозначать через  $\mathbb{F}$  основную числовую систему, в которой лежат значения всех известных и неизвестных букв.

Изучая линейные системы, удобно оставлять в тени неизвестные и выписывать лишь основную и расширенную матрицы системы:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}.$$

Решением системы (\*) называют список  $\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n$  элементов  $\mathbb{F}$ , подстановка которых вместо  $x_i$  превращает все уравнения системы (\*) в тождества. По количеству решений системы делятся на совместные и несовместные, на определённые и неопределённые:

| Решения | система     |              |
|---------|-------------|--------------|
| нет     | несовместна | определена   |
| одно    | совместна   |              |
| много   |             | неопределена |

Две линейные системы одинаковых размеров **эквивалентны**, если множества их решений одинаковы. Два простых преобразования переводят систему в ей эквивалентную:

- (R1) умножение одного уравнения на ненулевой элемент  $\alpha \in \mathbb{F}$ ;
- (R2) прибавление к одному уравнению другого.

Комбинациями этих примитивов представимы преобразования:

- (R2') прибавление к одному уравнению другого, помноженного на любой элемент из F;
  - (R3) перестановка пары уравнений местами.

Часто список элементарных преобразований составляют из преобразований (R1), (R2') и (R3): это удобнее для применений на практике, в то время как простота (R1) и (R2) удобна в доказательствах.

Лемма. Две линейные системы эквивалентны, если одна получается из другой конечной цепочкой элементарных преобразований. □

#### 5.2. МЕТОД ИСКЛЮЧЕНИЯ НЕИЗВЕСТНЫХ

Чтобы перейти от данной системы к более простой, путём элементарных преобразований методично зануляют коэффициенты.

Пример. Для системы уравнений выписана расширенная матрица:

$$\begin{cases} -x_1 + x_3 - 3x_4 + 2x_5 = 1, \\ 2x_1 - x_3 + 5x_4 - x_5 = 3, \\ x_1 - 2x_3 + 4x_4 - 5x_5 = -6, \end{cases} \begin{bmatrix} -1 & 0 & 1 & -3 & 2 & 1 \\ 2 & 0 & -1 & 5 & -1 & 3 \\ 1 & 0 & -2 & 4 & -5 & -6 \end{bmatrix}.$$

Эта система элементарными преобразованиями. . .

$$\begin{cases} -x_1 + x_3 - 3x_4 + 2x_5 = 1, \\ 0x_1 + x_3 - x_4 + 3x_5 = 5, \\ x_1 - 2x_3 + 4x_4 - 5x_5 = -6, \end{cases} \begin{bmatrix} -1 & 0 & 1 - 3 & 2 & 1 \\ 0 & 0 & 1 - 1 & 3 & 5 \\ 1 & 0 - 2 & 4 - 5 & -6 \end{bmatrix},$$

$$\begin{cases} -x_1 + x_3 - 3x_4 + 2x_5 = 1, \\ 0x_1 + x_3 - x_4 + 3x_5 = 5, \\ 0x_1 - x_3 + x_4 - 3x_5 = -5, \end{cases} \begin{bmatrix} -1 & 0 & 1 - 3 & 2 & 1 \\ 0 & 0 & 1 - 1 & 3 & 5 \\ 0 & 0 - 1 & 1 - 3 & 2 & 5 \end{bmatrix},$$

$$\begin{cases} -x_1 + 0x_3 - 2x_4 - x_5 = -4, \\ 0x_1 + x_3 - x_4 + 3x_5 = 5, \\ 0x_1 + 0x_3 + 0x_4 + 0x_5 = 0, \end{cases} \begin{bmatrix} -1 & 0 & 0 - 2 - 1 & -4 \\ 0 & 0 & 1 - 1 & 3 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$\begin{cases} x_1 + 0x_3 + 2x_4 + x_5 = 4, \\ 0x_1 + x_3 - x_4 + 3x_5 = 5, \\ 0x_1 + 0x_3 + 0x_4 + 0x_5 = 0, \end{cases} \begin{bmatrix} 1 & 0 & 0 & 2 & 1 & 4 \\ 0 & 0 & 1 - 1 & 3 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Общее решение исходной системы можно записать в виде

$$\begin{cases}
x_1 = 4 - 2x_4 - x_5, \\
x_3 = 5 + x_4 - 3x_5, \\
x_2, x_4, x_5 \in \mathbb{R} - \text{произвольные}
\end{cases}$$

Значит, система совместна и неопределена; при каждом наборе значений параметров  $x_2$ ,  $x_4$ ,  $x_5$  имеется одно решение.



образование в стиле hi tech

#### Матрицу коэффициентов назовём ступенчатой, когда:

- первый слева ненулевой элемент каждой строки есть единица, называемая главной;
  - столбец, содержащий главную единицу, в остальном нулевой;
  - (3) главные единицы уходят направо и вниз:

Как и в рассмотренном выше примере, решения системы ступенчатого вида выписывают непосредственно по её расширенной матрице. При этом множества решений у любой пары различных систем ступенчатого вида обязательно получаются различны.

**Теорема.** Всякая система линейных уравнений жвивалентна (единственной) системе ступенчатого вида.

Следствие. (1) Число параметров, описывающих множество решений совместной системы, равно числу неглавных столбирв.

- (2) Система определена все столбуы главные.
- (3) Система совместна ← каждой нулевой строке соответствует нулевой свободный член.

Наличие нулевых строк в расширенной ступенчатой матрице сигнализирует, что исходная система избыточна: лишние уравнения можно отбросить, не изменив множество решений. Какие именно уравнения излишни, сказать нелегко, но количество существенных уравнений видно: оно равно количеству главных единиц.

Рабочее определение. Рангом матрицы A назовём количество ненулевых строк в ступенчатом виде, к которому A приводится.

Рабочим это определение является сразу в двух смыслах:

- вскоре его заменят «настоящие» определения ранга, коих будет целых три;
- даже после грядущей замены, практически найти ранг матрицы обычно быстрее всего именно приведением её к ступенчатому виду.

Следствие (критерий совместности). Линейная система совместна ⇔ ранги основной и расширенной матрии, равны.

Следствие. Совместная система имеет единственное решение число неизвестных равно рангу системы.

# **Российский**Технапогический

#### Центр дистанционного обучения

образование в стиле hi tech

#### .... Линейные пространства строк и стольцов

Работая с векторами в фиксированной системе координат, мы оперируем над столбцами их координат; эти столбцы мы можем складывать и умножать на скаляры. Решая линейные системы элементарными преобразованиями, мы оперируем над строками расширенной матрицы; эти строки мы можем складывать и умножать на числа (тоже называемые скалярами). Дальнейшее изучение математики и физи постоянно будет сталкивать студента с объектами самой разной природы, которые можно складывать и умножать на скаляры. Как правило,

при этом выполнены 8 привычных свойств сложения и умножения, перечисленных в самом первом разделе лекций.

Множество  $\mathcal{L}$  с двумя такими операциями называют **линейным** или **векторным пространством**. Элементы любого линейного пространства называют векторами.





#### . Понятие линейного пространства

Рассмотрим множество V элементов x, y, z, ... и множество R действительных чисел. Определим операцию «*сложения*» элементов множества V (ее называют *внутренней* операцией): любой упорядоченной паре элементов  $x \in V$ ,  $y \in V$  поставим в соответствие третий элемент  $z \in V$ , называемый их «*суммой*», будем писать в этом случае z = x + y.

Введем также операцию *«умножения»* элементов множества V на действительное число (эту операцию называют *внешней*); каждому элементу  $x \in V$  и действительному числу  $\alpha \in R$  поставим в соответствие элемент  $z = \alpha x = x \alpha$ , где  $z \in V$ . Потребуем, чтобы операция *«сложения»* элементов множества V и операция *«умножения»* элементов этого множества на действительное число удовлетворяли следующим *аксиомам*:

**I** Сложение коммутативно, т.е. x + y = y + x для любых  $x \in V$ ,  $y \in V$ .

II Сложение ассоциативно, т.е. (x + y) + z = x + (y + z) для любых  $x \in V$ ,  $y \in V$ ,  $z \in V$ .

**III** Существует нулевой элемент, т.е. такой элемент, который в сумме с любым элементом x дает тот же элемент x; обозначим нулевой элемент символом  $\theta$ , тогда  $x + \theta = x$ , для любого  $x \in V$ .

IV Для каждого элемента  $x \in V$  существует противоположный элемент, т.е. такой элемент, который в сумме с данным дает нулевой элемент; элемент, противоположный элементу x, обозначим через -x, тогда  $x + (-x) = \theta$  для любого  $x \in V$ .

V Умножение на число 1 не меняет элемента, т.е.  $1 \cdot x = x$  для любого  $x \in V$  .

Для любых  $x, y \in V$ ,  $\alpha, \beta \in R$ :

VI 
$$\alpha(\beta x) = (\alpha \beta)x$$
.

VII 
$$\alpha(x+y) = \alpha x + \alpha y$$
.

**VIII** 
$$(\alpha + \beta)x = \alpha x + \beta x$$
.

Множество V элементов x, y, z, ..., в котором определены операции «сложения» элементов и «умножения» элемента на действительное число, удовлетворяющие аксиомам I — VIII, называется действительным линейным пространством (или действительным векторным пространством). Элементы действительного линейного пространства называют векторами.





Обращаем внимание читателя, что внутренняя операция «сложения» на самом деле может и не быть сложением в обычном понимании, а может быть, например, вычитанием, умножением, логарифмированием по определенному основанию и т.д. В точности также дело обстоит и с внешней операцией – «умножением». В дальнейшем, помня это, кавычки для удобства записи будем

опускать, однако обязательно будем оговаривать в каждом отдельном случае, <u>что</u> означает в этом конкретном примере операция сложения и что означает операция умножения.

Итак, дано определение действительного линейного пространства. Если бы мы предположили, что в множестве *V* определено умножение не только на действительные, но и на любые комплексные числа, то, сохраняя те же аксиомы I – VIII, получили бы определение комплексного линейного пространства. Для определенности ниже рассматриваются действительные линейные пространства, однако все, что будет сказано в настоящей главе, переносится дословно на случай комплексных линейных пространств.





Для линейного пространства справедливы следующие теоремы:

**Teopema 1** В линейном пространстве имеется единственный нулевой элемент.

Доказательство. Предположим, что в линейном пространстве V имеются два нулевых элемента  $\theta_1$  и  $\theta_2$ , тогда  $\theta_1+\theta_2=\theta_1$  и  $\theta_1+\theta_2=\theta_2$ , поэтому  $\theta_1=\theta_2$ .

**Теорема** 2 Для любого элемента x линейного пространства существует единственный противоположный элемент -x.

Доказательство. Предположим, что для элемента x существует два противоположных элемента  $x_1$  и  $x_2$ , т.е.  $x+x_1=\theta$  и  $x+x_2=\theta$ , тогда  $x_1=(x_2+x)+x_1=x_2+(x+x_1)=x_2$ , следовательно,  $x_1=x_2$ .

**Теорема** 3 Для элемента -x противоположным будет элемент x.

Доказательство. Поскольку -x+x=x+(-x) (по аксиоме I) и  $x+(-x)=\theta$  (по аксиоме III), то  $-x+x=\theta$ , а это означает, что x - элемент, противоположный элементу -x .

**Теорема 4** Для любого элемента x произведение  $0x = \theta$ , где  $\theta - 4uc$ ло нуль,  $\theta - Hy$ левой элемент.

Доказательство. Так как  $0x = 0x + (x + (-x)) = (0x + x) + (-x) = x(0+1) + (-x) = x + (-x) = \theta$ . Итак, получим  $0x = \theta$ .

**Теорема** .5 Для любого элемента x произведение  $-1 \cdot x = -x$ , где (-x) - элемент, противоположный элементу x.

Доказательство. Поскольку  $-1 \cdot x + x = (-1+1)x = 0x = \theta$ , или  $-1 \cdot x + x = \theta$ , то  $-1 \cdot x$  - элемент, противоположный элементу x, т.е. (-1)x = -x.

**Теорема** 6 Для любого числа  $\alpha$  произведение  $\alpha\theta = \theta$ , где  $\theta$  — нулевой элемент.

Доказательство.  $\alpha\theta=\alpha(x+(-x))=\alpha(x+(-1)x)=\alpha x+\alpha(-1)x=\alpha x+$  $+(-\alpha x)=\theta$  ,  $\alpha\theta=\theta$  .





**Теорема 9.7** Если  $\alpha x = 0$  и  $\alpha \neq 0$ , то  $x = \theta$ .

Доказательство. Пусть  $\alpha x = 0$  и  $\alpha \neq 0$ , тогда  $\frac{1}{\alpha} \cdot \alpha x = 0$ , или  $x = \theta$ .

**Теорема 9.8** Если  $\alpha x = 0$  и  $x \neq \theta$ , то  $\alpha = 0$ .

Доказательство. Предположим противное, т.е.  $\alpha \neq 0$ , получим  $\cdot (\alpha x) = \frac{1}{\alpha} \cdot 0 = 0$ , или  $\frac{1}{\alpha} \cdot \alpha x = x = 0$ , то, что противоречит условию.

*Следствие.* Равенство  $\alpha x = 0$  выполняется тогда и только тогда, когда  $\alpha = 0$  или  $x = \theta$ .

Следствие непосредственно вытекает из 4, 6 – 8.

образование в стиле hi tech



#### Примеры линейных пространств:

- 1) Множество всех свободных векторов  $a(a_1, a_2, a_3)$ , где  $a_1, a_2, a_3$  могут принимать любые действительные значения, для которых определены сложение и умножение вектора на число является линейным пространством. Обозначим это линейное пространство символом  $V_3$ . Отметим, что роль нулевого элемента здесь играет нуль-вектор; для любого вектора a противоположным является -a.
- 2) Множество всех матриц размеров  $m \times n$ , для которых определены сложение матриц и умножение матрицы на число обычным образом, является линейным пространством. Роль нулевого элемента здесь играет нулевая матрица; для матрицы  $(a_{ik})_{mn}$  противоположной будет матрица  $(-a_{ik})_{mn}$ .
- 3) Множество  $\{P_n(x)\}$  всех алгебраических многочленов степени, не превышающей натурального числа n, для которых операции сложения многочленов и умножения многочлена на действительное число определены обычными правилами, является линейным пространством. Роль нулевого элемента играет многочлен, все коэффициенты которого равны нулю; для многочлена

$$P_n(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n \,.$$
 противоположным будет

$$-P_n(x) = -a_0 x^n - a_1 x^{n-1} - \dots - a_{n-1} x - a_n.$$

**4)** Множество  $A_n$ , элементами которого являются упорядоченные совокупности n действительных чисел  $x=(x_1,\,x_2,\,...,\,x_n), y=(y_1,\,y_2,\,...,\,y_n);$  линейные операции над элементами  $A_n$  определяются формулами

$$x + y = ((x_1 + y_1), (x_2 + y_2), ..., (x_n + y_n)),$$
  
 $\alpha x = (\alpha x_1, \alpha x_2, ..., \alpha x_n);$ 

элемент  $\theta = (0, 0, ..., 0)$  является нулевым, элемент  $-x = (-x_1, -x_2, ..., -x_n)$  - противоположным элементу  $x = (x_1, x_2, ..., x_n)$ , является линейным пространством.





#### Свойства линейного пространства

Непосредственно из аксиом линейного пространства можно вывести ряд его простейших свойств.

1°. Нулевой элемент  $\theta$  определен однозначно.

◀ Пусть  $\theta_1$  и  $\theta_2$  — нулевые элементы пространства V. Рассмотрим сумму  $\theta_1 + \theta_2$ . Вследствие того что  $\theta_2$  — нулевой элемент, из аксиомы 3 линейного пространства получаем, что  $\theta_1 + \theta_2 = \theta_1$ , а поскольку элемент  $\theta_1$  также нулевой, то  $\theta_1 + \theta_2 = \theta_2 + \theta_1 = \theta_2$ , т. е.  $\theta_1 = \theta_2$ . ▶

 $2^{\circ}$ . Для любого элемента x противоположный ему элемент (-x) определен однозначно.

◀ Пусть для некоторого х существуют два противоположных элемента х' и х". Покажем, что они равны.

Рассмотрим сумму x'' + x + x'. Пользуясь аксиомами 1–3 линейного пространства и тем, что элемент x' противоположен элементу x, получаем

$$x'' + x + x' = x'' + (x + x') = x'' + \theta = x''$$
.

Аналогично убеждаемся в том, что

$$x'' + x + x' = (x'' + x) + x' = \theta + x' = x'.$$





3°. В произвольном линейном пространстве нулевой (нейтральный) элемент θ равен произведению произвольного элемента x и числа 0; для каждого элемента x противоположный ему элемент равен произведению x и действительного числа (-1).

$$0x = 0x + \theta = 0x + (x + x') = 0x + 1x + x' = 0$$

$$= (0+1)x + x' = 1x + x' = x + x' = 0 \implies 0x = 0.$$

Пусть x — произвольный элемент, y = (-1)x. Используя аксиомы линейного пространства и доказанное свойство  $0x = \theta$ , получаем

$$x + y = x + (-1)x = 1x + (-1)x = [1 + (-1)]x = 0x = 0.$$

4°. Для любого вещественного числа  $\alpha$  и  $\theta$  выполняется равенство  $\alpha\theta=\theta$ .

**◄** Действительно,  $\alpha\theta = \alpha(\theta + \theta) = \alpha\theta + \alpha\theta$ . Прибавляя к левой и правой частям равенства  $-\alpha\theta$ , получаем  $\theta = \alpha\theta$ . ▶

5°. Из равенства  $\alpha x = \theta$  следует, что либо  $\alpha = 0$ , либо  $x = \theta$ .

$$x=1\cdot x=\left(\frac{1}{\alpha}\alpha\right)x=\frac{1}{\alpha}(\alpha x)=\frac{1}{\alpha}\theta=\theta.$$

Определение 1.3. Разностью x-y элементов x и y называют такой элемент z, что x=y+z.

Легко заметить, что x - y = x + (-y).



Примеры решения задач

разование в стиле hi tech

$$_{3$$
адача 1.1. Показать, что множество  $M = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$  квадратных

матриц второго порядка, элементами которых являются действительные числа, образует линейное пространство, если за операции взять сложение матриц и умножение матрицы на число.

**◄** Пусть 
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 и  $\mathbf{B} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$  — элементы множе-

ства M. Убедимся в том, что M — линейное пространство. Действительно, сумма матриц A + B и матрица  $\alpha A$  также представляют собой квадратные матрицы второго порядка, аксиомы 1 и 2 линейного пространства выполняются в силу переместительного и сочетательного свойств операции сложения матриц. Справедлива аксиома 3 линейного пространства — роль нулевого элемента иг-

рает нулевая матрица  $\Theta = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ . Противоположным элементом

может служить матрица 
$$-\mathbf{A} = \begin{pmatrix} -a_{11} & -a_{12} \\ -a_{21} & -a_{22} \end{pmatrix}$$
, поэтому аксиома 4

также справедлива. Остальные аксиомы линейного пространства выполняются в силу соответствующих операций над матрицами. Следовательно, множество M— линейное пространство.

Примечание. Аналогично можно доказать, что все квадратные матрицы порядка п с вещественными элементами образуют линейное (векторное) пространство над полем вещественных чисел, если за операши взять сложение матриц и умножение матрицы на число. ▶

Залача 1.2. Проверить, образует ли линейное пространство множество многочленов степени п от одного неизвестного с действительными коэффициентами, если за операции взять обычные сложение многочленов и умножение многочлена на число.

▼ Такое множество не является линейным пространством, так как сумма двух многочленов степени п может оказаться многочленом степени меньше п.

Например, если n=5, то

$$(x^5 + 2x^4 - 3x + 1) + (-x^5 + 5x^2 - 10) = 2x^4 + 5x^2 - 3x - 9$$

т. е. операция сложения выводит элемент за множество многочленов степени 5. ▶





Задача 1.3. Показать, что множество всевозможных упорядочен, ных пар действительных чисел с элементами  $\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$  в

 $\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ , в котором операция сложения элементов определена по

праввлу

$$\mathbf{X} + \mathbf{Y} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix},$$

а операция умножения элемента из  $R^2$  на любое число  $\lambda \in \mathbb{R}$  — по правилу

$$\lambda \mathbf{X} = \begin{pmatrix} \lambda x_1 \\ x_2 \end{pmatrix},$$

не образует линейного пространства.

◄ Действительно, например, аксиома 7 линейного пространтва не выполняется, поскольку:

$$(\lambda + \mu)\mathbf{X} = \begin{pmatrix} (\lambda + \mu)x_1 \\ x_2 \end{pmatrix}$$
 — левая часть равенства аксиомы 7;

$$\lambda \mathbf{X} + \mu \mathbf{X} = \begin{pmatrix} \lambda x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \mu x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} (\lambda + \mu)x_1 \\ 2x_2 \end{pmatrix}$$
 — правая часть равенства ксиомы 7;

$$(\lambda + \mu)X \neq \lambda X + \mu X. \blacktriangleright$$



#### Линейная зависимость векторов

Вектор y называют *пропорциональным* вектору x, если y = kx для некоторого числа k. В аналитической геометрии такие векторы называются коллинеарными. Вектор y называют линейной комбинацией (конечной) системы векторов  $x_1, x_2, ..., x_s$ , если существуют такие числа  $\alpha_1, \alpha_2, ..., \alpha_s$ , что

$$y = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_s x_s. \tag{1.1}$$

При этом говорят также, что вектор y линейно выражается через векторы  $x_1, x_2, ..., x_s$ .

Если вектор b линейно выражается через систему вектора  $x_1, x_2, ..., x_s$ , то он будет линейно выражаться и через любую конечную систему векторов, включающую в себя систему  $x_1, x_2, ..., x_s$ .

Действительно, если выполняется равенство

$$y = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_s x_s + 0 \cdot x_{s+1} + \dots + 0 \cdot x_r$$
.

Это равенство означает, что вектор b линейно выражается через систему векторов  $x_1, x_2, ..., x_r$ .

Конечная система векторов  $x_1, x_2, ..., x_r$  называется линейно зависимой, если существуют такие числа  $\alpha_1, \alpha_2, ..., \alpha_r$ , не все равные нулю, что

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_r x_r = 0. \tag{1.2}$$

В противном случае система векторов  $x_1, x_2, ..., x_r$  линейно независима.





Система векторов  $x_1, x_2, ..., x_s$  линейно зависима тогда и только тогда, когда хотя бы один из ее векторов линейно выражается через остальные векторы.

Действительно, если система векторов  $x_1, x_2, ..., x_s$  линейно зависима, то выполняется равенство

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_s x_s = 0, \tag{1.3}$$

в котором, например  $\alpha_s \neq 0$ . Тогда из этого равенства получаем:

$$x_s = -\frac{\alpha_1}{\alpha_s} x_1 - \frac{\alpha_2}{\alpha_s} a_2 - \dots - \frac{\alpha_{s-1}}{\alpha_s} x_{s-1}.$$

Это означает, что вектор  $x_{s}$  линейно выражается через систему векторов  $x_{1}, x_{2}, ..., x_{s-1}$ .

Наоборот, пусть вектор  $x_s$  линейно выражается через систему векторов  $x_1, x_2, ..., x_{s-1},$  т.е.

$$x_s = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_{s-1} x_{s-1}$$
.

Тогда верно и равенство (9.3), в котором  $\alpha_s = -1 \neq 0$ . Значит, система векторов  $x_1, x_2, ..., x_s$  линейно зависима.





<u>Например</u>, рассмотрим линейное пространство многочленов не выше второй степени. Докажем, что векторы  $p_1 = 1 + 2t + 3t^2$ ,  $p_2 = 2 + 3t + 4t^2$  и  $p_3 = 3 + 5t + 7t^2$  линейно зависимы.

Действительно, эти вектора линейно зависимы, так как  $p_3 = 1 \cdot p_1 + 1 \cdot p_2$ .

Совокупность элементов, каждый их которых есть элемент системы  $x_1, x_2, ..., x_n$ , называется *подсистемой* этой системы.

Две конечные системы векторов называют эксисалентными, если они линейно выражаются одна через другую.

Непосредственно легко проверить, что

- эквивалентность систем векторов обладает свойством транзитивности,
   т.е. если первая система векторов эквивалентна второй, а вторая третьей, то первая система векторов эквивалентна третьей;
- если вектор линейно выражается через данную систему векторов, то он линейно выражается через любую другую систему векторов, эквивалентную данной.

образование в стиле hi tech

**Теорема** (основная теорема о линейной зависимости векторов) Пусть даны две системы векторов  $x_1, x_2, ..., x_r$  и  $y_1, y_2, ..., y_s$ , причем первая линейно независима и линейно выражается через вторую. Тогда число векторов в первой системе не превышает числа векторов во второй, т.е.  $r \le s$ .

Доказательство. Утверждение теоремы, по существу, означает, что из *в* векторов нельзя создать систему линейных комбинаций этих векторов, которая, с одной стороны, линейно независима, а с другой – содержит более *в* векторов.

По условию теоремы система векторов  $x_1, x_2, ..., x_r$  линейно независима и линейно выражается через векторы системы  $y_1, y_2, ..., y_s$ . Следовательно, существуют такие числа  $\alpha_{ii}$ , что выполняются неравенства

$$\begin{cases} x_1 = \alpha_{11}y_1 + \alpha_{12}y_2 + \dots + \alpha_{1s}y_s, \\ x_2 = \alpha_{21}y_1 + \alpha_{22}y_2 + \dots + \alpha_{2s}y_s, \\ \dots \\ x_r = \alpha_{r1}y_1 + \alpha_{r2}y_2 + \dots + \alpha_{rs}y_s. \end{cases}$$
(1.4)

Допустим, что r>s , и рассмотрим линейную комбинацию векторов  $\lambda_1x_1+\lambda_2x_2+...+\lambda_rx_r$  .

В силу равенств (9.4) эту линейную комбинацию можно представить следующим образом:

$$\lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_r x_r = \sum_{i=1}^r \lambda_i x_i = \sum_{i=1}^r \lambda_i \left( \sum_{j=1}^s x_i y_j \right) = \sum_{j=1}^s \left( \sum_{i=1}^r x_{ij} \lambda_i \right) y_j.$$

В рассматриваемой линейной комбинации векторов попытаемся подобрать числа  $\lambda_1, \lambda_2, ..., \lambda_r$  так, что они одновременно не равны нулю, но при этом все коэффициенты при векторах  $y_1, y_2, ..., y_s$  обнуляются. Это означает, что набор чисел  $\lambda_1, \lambda_2, ..., \lambda_r$  является решением системы линейных однородных уравнений





$$\begin{cases} \alpha_{11}\lambda_1 + \alpha_{12}\lambda_2 + \dots + \alpha_{1r}\lambda_r = 0, \\ \alpha_{21}\lambda_1 + \alpha_{22}\lambda_2 + \dots + \alpha_{2r}\lambda_r = 0, \\ \dots \\ \alpha_{r1}\lambda_1 + \alpha_{r2}\lambda_2 + \dots + \alpha_{rs}\lambda_r = 0. \end{cases}$$

При r>s число неизвестных в системе превышает число уравнений, поэтому она имеет ненулевое решение. Любое ненулевое решение системы дает такой набор коэффициентов  $\lambda_1,\,\lambda_2,\,...,\,\lambda_r,$  одновременно не обращающихся в нуль, для которых

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_r x_r = 0.$$

Существование таких коэффициентов равносильно линейной зависимости векторов  $x_1, x_2, ..., x_r$ , что противоречит условию теоремы. Значит, предположение r > s неверно и на самом деле  $r \le s$ . Что и требовалось доказать.

**Следствие**. Любые две эквивалентные линейно независимые системы векторов имеют одинаковое число векторов.

Действительно, по доказанной теореме для двух линейно независимых эквивалентных систем векторов количество векторов в первой системе не превышает количества векторов во второй. Но системы в этом утверждении можно поменять местами, поэтому в первой системе не меньше векторов, чем во второй.

Заметим, что любые две максимальные линейно независимые подсистемы данной системы векторов эквивалентны. Значит, согласно доказанному следствию они имеют одно и то же число векторов.

образование в стиле hi tech



#### Свойства линейной зависимости и независимости.

1. Если к линейно зависимой системе векторов  $a^{(1)}, a^{(2)}, ..., a^{(p)}$  добавить несколько векторов, то полученная система будет линейно зависимой.

#### Доказательство.

Так как система векторов  $a^{(1)}, a^{(2)}, \ldots, a^{(p)}$  линейно зависима, то равенство  $\lambda_1 \cdot a^{(1)} + \lambda_2 \cdot a^{(2)} + \ldots + \lambda_k \cdot a^{(k)} + \ldots + \lambda_p \cdot a^{(p)} = 0 \ \text{возможно при наличии хотя бы одного ненулевого числа из чисел } \lambda_1, \lambda_2, \ldots, \lambda_p.$  Пусть  $\lambda_k \neq 0$ .

Добавим к исходной системе векторов еще s векторов  $c^{(1)}, c^{(2)}, \ldots, c^{(s)}$ , при этом получим систему  $a^{(1)}, a^{(2)}, \ldots, a^{(p)}, c^{(1)}, c^{(2)}, \ldots, c^{(s)}$ . Так как  $\lambda_1 \cdot a^{(1)} + \lambda_2 \cdot a^{(2)} + \ldots + \lambda_k \cdot a^{(k)} + \ldots + \lambda_p \cdot a^{(p)} = 0$  и  $0 \cdot c^{(1)} + 0 \cdot c^{(2)} + \ldots + 0 \cdot c^{(s)} = 0$ , то линейная комбинация векторов этой системы вида  $\lambda_1 \cdot a^{(1)} + \lambda_2 \cdot a^{(2)} + \ldots + \lambda_k \cdot a^{(k)} + \ldots + \lambda_p \cdot a^{(p)} + \ldots + 0 \cdot c^{(1)} + 0 \cdot c^{(2)} + \ldots + 0 \cdot c^{(s)}$  представляет собой нулевой вектор, а  $\lambda_k \neq 0$ . Следовательно, полученная система векторов является линейно зависимой.

2. Если из линейно независимой системы векторов  $a^{(1)}, a^{(2)}, ..., a^{(p)}$  исключить несколько векторов, то полученная система будет линейно независимой.

#### Доказательство.

Предположим, что полученная система линейно зависима. Добавив к этой системе векторов все отброшенные векторы, мы получим исходную систему векторов. По условию – она линейно независима, а в силу предыдущего свойства линейной зависимости она должна быть линейно зависимой. Мы пришли к противоречию, следовательно, наше предположение неверно.

online.mirea.ru





3. Если в системе векторов  $a^{(1)}, a^{(2)}, \dots, a^{(p)}$  есть хотя бы один нулевой вектор, то такая система линейно зависимая.

#### Доказательство.

Пусть вектор  $a^{(k)}$  в этой системе векторов является нулевым. Предположим, что исходная система векторов линейно независима. Тогда векторное равенство  $\lambda_1 \cdot a^{(1)} + \lambda_2 \cdot a^{(2)} + \ldots + \lambda_k \cdot a^{(k)} + \ldots + \lambda_p \cdot a^{(p)} = 0$  возможно только тогда, когда  $\lambda_1 = \lambda_2 = \ldots = \lambda_k = \ldots = \lambda_p = 0$ . Однако, если взять любое  $\lambda_k$ , отличное от нуля, то равенство  $\lambda_1 \cdot a^{(1)} + \lambda_2 \cdot a^{(2)} + \ldots + \lambda_k \cdot a^{(k)} + \ldots + \lambda_p \cdot a^{(p)} = 0$  все равно будет справедливо, так как  $a^{(k)} = 0$ . Следовательно, наше предположение неверно, и исходная система векторов линейно зависима.

4. Если система векторов  $a^{(1)}, a^{(2)}, \dots, a^{(p)}$  линейно зависима, то хотя бы один из ее векторов линейно выражается через остальные. Если система векторов  $a^{(1)}, a^{(2)}, \dots, a^{(p)}$  линейно независима, то ни один из векторов не выражается через остальные.





#### Исследование системы векторов на линейную зависимость.

Поставим задачу: нам требуется установить линейную зависимость или линейную независимость системы векторов  $a^{(1)}, a^{(2)}, ..., a^{(p)}$ .

Логичный вопрос: «как ее решать?»

Кое-что полезное с практической точки зрения можно вынести из рассмотренных выше определений и свойств линейной зависимости и независимости системы векторов. Эти определения и свойства позволяют нам установить линейную зависимость системы векторов в следующих случаях:

- 1. когда хотя бы один из векторов системы является нулевым;
- 2. когда система векторов содержит два или более равных вектора;
- 3. когда система векторов содержит пропорциональные векторы (a и  $\gamma \cdot a$ );
- 4. когда достаточно очевидно, что один из векторов системы линейно выражается через несколько других.





#### Как же быть в остальных случаях, которых большинство?

Теорема.

Пусть r – ранг матрицы A порядка p на n,  $r \le \min(p, n)$ . Пусть M – базисный минор матрицы A. Все строки (все столбцы) матрицы A, которые не участвуют в образовании базисного минора M, линейно выражаются через строки (столбцы) матрицы, порождающие базисный минор M.

А теперь поясним связь теоремы о ранге матрицы с исследованием системы векторов на линейную зависимость.

Составим матрицу A, строками которой будут векторы исследуемой системы  $a^{(1)}, a^{(2)}, \dots, a^{(p)}$ :

$$A = \begin{pmatrix} a_1^{(1)} & a_2^{(1)} & \cdots & a_n^{(1)} \\ a_1^{(2)} & a_2^{(2)} & \cdots & a_n^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ a_1^{(p)} & a_2^{(p)} & \cdots & a_n^{(p)} \end{pmatrix}$$

Что будет означать линейная независимость системы векторов  $a^{(1)}, a^{(2)}, ..., a^{(p)}$ ?

Из четвертого свойства линейной независимости системы векторов  $a^{(1)}, a^{(2)}, ..., a^{(p)}$  мы знаем, что ни один из векторов системы не выражается через остальные. Иными словами, ни одна строка матрицы A не будет линейно выражаться через другие строки, следовательно, линейная независимость системы векторов  $a^{(1)}, a^{(2)}, ..., a^{(p)}$  будет равносильна условию Rank(A) = p.

Что же будет означать линейная зависимость системы векторов  $a^{(1)}, a^{(2)}, ..., a^{(p)}$ ?

Все очень просто: хотя бы одна строка матрицы A будет линейно выражаться через остальные, следовательно, линейная зависимость системы векторов  $a^{(1)}, a^{(2)}, \dots, a^{(p)}$  будет равносильна условию Rank(A) < p.

online.mirea.ru



### **А**лгоритм исследования системы векторов на линейную зависимость.

- 1. Сначала следует убедиться, что число векторов исследуемой системы  $a^{(1)}, a^{(2)}, \dots, a^{(p)}$  не превосходит числа координат векторов. Если же p > n, то можно делать вывод о линейной зависимости.
- Проверяем, не содержит ли система векторов нулевого вектора, равных векторов, пропорциональных векторов (а и γ·а). Если такие имеются, то также делается вывод о линейной зависимости системы.
- 3. Если два предыдущих пункта алгоритма не привели к результату, то составляем матрицу A, строками которой являются векторы исследуемой системы векторов и находим ее ранг. Если Rank(A) < p, то система векторов  $a^{(1)}, a^{(2)}, \dots, a^{(p)}$  линейно зависима. Если Rank(A) = p, то система векторов  $a^{(1)}, a^{(2)}, \dots, a^{(p)}$  линейно независима.





#### Пример.

Дана система векторов a=(1,2,5), b=(4,0,-1), c=(0,0,0). Исследуйте ее на линейную зависимость.

#### Решение.

Так как вектор с нулевой, то исходная система векторов линейно зависима в силу третьего свойства.

#### Ответ:

система векторов линейно зависима.

#### Пример.

Исследуйте систему векторов  $a = (1, -1, 2, 0), b = (1, 5, -2, \sqrt{2}), c = (3, -3, 6, 0)$ на линейную зависимость.

#### Решение.

Не сложно заметить, что координаты вектора *с* равны соответствующим координатам вектора a, умноженным на 3, то есть,  $a = 3 \cdot c$ . Поэтому, исходная система векторов линейно зависима.

#### Ответ:

система векторов линейно зависима.

**ЕМИРЭ** А Российский технологический

стиле hi tech

#### Пример.

Является ли система векторов  $a=(1,2), b=\left(7,\frac{1}{3}\right), c=\left(0,e^2\right), d=\left(\sqrt{\pi},1\right)$ 

линейно зависимой?

#### Решение.

Эта система векторов является линейно зависимой, так как количество векторов в системе равно 4, а сами векторы двумерные.

#### Ответ:

да, является.

#### Пример.

Является ли система векторов  $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ ,  $\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$ ,  $\begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$  линейно независимой?

#### Решение.

Примем эти векторы столбцами матрицы A и найдем ранг полученной матрицы методом Гаусса:

$$\begin{pmatrix} 1 & 2 & 2 \\ -1 & -1 & 0 \\ 3 & 4 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 2 \\ -1+1\cdot1 & -1+1\cdot2 & 0+1\cdot2 \\ 3+(-3)\cdot1 & 4+(-3)\cdot2 & 2+(-3)\cdot2 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & -2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & -2+2\cdot1 & -4+2\cdot2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Следовательно, Rank(A)=2<3, поэтому, исходная система векторов линейно зависима.



## Спасибо за внимание!